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In traditional power
systems, the sources of
uncertainties are
represented by the loads.

Transmission

) 4
Majority of the control

problems are solved in the
planning (years) or
dispatching (day) stages.

Sub-transmission

Distribution (medium
voltage)

Distribution

(low voltage)
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Massive deployment of
distributed energy
resources - large
uncertainties come from
injections

Transmission

Sub-transmission v

Control problems are
solved in the planning
(years), dispatching (day)
and real-time.

Distribution (medium
voltage)

Distribution

(low voltage)

M. Paolone | 05.12.2017




Methodological/technological challenges In Smart grids

s

Problem Required methods Required technologies
= Renewables short-term = Real-time knowledge of the = Distributed sensing (e.g.
volatility system state PMU)

= Real-time state estimators

time - secs-mins — ms ——

<«— months
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Network Optimal
monitoring  yjp control  ©ONgestion

management

Optimal dispatch

Real-Time of DERs

monitoring | islanding

of power grids operation

+accurate

+reliable Losses
minimization

+fast (sub-second)

+low latency Fault detection

and location
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Drivers Availability of new technologles (e.g., precise time dissemination)
—> Enable new situation-awareness and control schemes in power
grids

Primary
SS

Monitoring

)
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Definition

Phasor Measurement Unit
(IEEE Std.C37.118-2011)

“A device that produces synchronized measurements of
phasor (i.e. its amplitude and phase), frequency, ROCOF
(Rate of Change Of Frequency) from voltage and/or current
signals based on a common time source that typically is the
one provided by the Global Positioning System UTC-GPS.’

)
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Methodological/technological challenges in smart grids

e e

Problem Required methods Required technologies
= Renewables short-term = Real-time knowledge of the = Distributed sensing (e.g.
volatility system state PMU)

= Real-time state estimators

time - secs-mins — ms ——

<«— months
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Definition 1/2
To fix the ideas, in what follows with the term
Real-Time State Estimation — RTSE

we make reference to the process of estimating the network
state (i.e., phase-to-ground node voltages) with an
extremely high refreshing rate (typically of several tens of
frames per second) enabled by the use of synchrophasor
measurements.

)
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Use cases

Monitoring Protection Control

» Real-time visualization and » Fault identification Voltage control

alarming «  Fault location « Line congestion management

* Real-time State Estimation ~ «  Faylt isolation «  Distributed resources control (€.g.,

» Post-event analysis electrochemical storage)

Planning of grid reinfor- » Network islanding (and reconnection)
cement due to excessive »  System restoration
DER penetration

» Asset management
« Equipment misoperation
«  System health monitoring

I(I’fl. L M. Paolone | 05122017
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Methodological/technological challenges in smart grids

s

‘ Problem Required methods Required technologies
£

|

&

£ | = Grid congestions = Exact optimal power flow = Distributed storage

& | = Voltage control = Explicit control methods

7 = Stability assessment of

2 complex systems (low inertia)

<«— months
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The COMMELEC control framework — Main features

= inexpensive platforms (embedded controllers)
= scalability
= do not build a monster of complexity - bug-free

Such a control framework must be

= scalable

= composable

(i.e. built with identical small elements)

)
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COMMELEC's Architecture
s

= Software Agents

A
associated with devices / i, \

= |oad, generators, storage
= grids "

&)
o)
&

= Grid agent sends explicit

power setpoints to e M s:
devices’ agents \ S1 S2 v
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= Every agent advertises its state (example each 100 ms) as a
PQt profile, a virtual cost and a belief function

= Each Grid agent computes optimal setpoints and sends them

as requests to resource agents.
I M Pk 05.122017
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PQt profile: constraints on active/reactive power setpoints

Examples of PQt profiles

Synchronous
Battery Generator
ST. A P Pgrmsc
\ R ___Ar::’:
PV plant
,_," \\\‘ T ) P
" o Pl (#)
| > () \ J— e
X ~
Pgrun |
:"f‘ COSppi n(ﬁ"]‘ = 0.8
F -’Q

)
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COMMELEC’s Architecture - The Virtual Cost

o
Virtual cost: proxy for the resource internal constraints

Example:
If (State-of-Charge) is 0.7
| am willing to inject power

If (State-of-Charge) is 0.3,
| am interested in absorbing power

Battery agent

Grid agent

N M. Paolone [05122017 19
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= Say grld agent requests setpomt
(Pgets Qqer) from a resource
= Actual setpoint will, in general,
differ e PQt profile slice
» The belief function is exported by
a resource agent with the semantic: S\ Pl
resource implements e
(P.Q) EBF(Pyer, Qger) DPY
= |t gives bounds on the actual (P,Q) )
that will be observed when the , \ SN
follower is instructed to implement a ST
given setpoint. 0

= Essential for safe operation.
!M(O!\)ﬂ!w_ M. Paolone | 05.12.2017
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Leader agent (grld agent) computes setpomts for foIIowers based on
= the state of the grid

= advertisements received from the resources

: Ce Cost of power flow at point
The Grid Agent attempts to minimize o

I(x)=a W (x)+w(z)+ 3,(x,)

Virtual cost of the Penalty function of grid electrical state z
resources  (e.g., voltages close to 1 p.u.,
line currents below the ampacity)

The Grid Agent does not see the details of resources
a grid is a collection of devices that export PQt profiles, virtual costs and

belief functions and has some penalty function problem solved by grid

agent is always the same
I
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COMMELEC's Architecture — Experimental resuits
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Methodological/technological challenges In Smart grids

s

Problem Required methods Required technologies
[<b)
£
» | = Heterogeneous resources = Real-time estimation of = Agent-based software
§ aggregation system flexibility frameworks
‘é’ = Ancillary services (system = Robust optimization = Demand response
£ | stability) = Short-term forecast = New technologies in pumped
2 hydro
S
=
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= Achieving dispatched-by-design operation of traditionally
stochastic prosumption allows reducing grid reserve

requirements.

= The dispatch plan is built to satisfy a local objective, such as
peak shaving, load levelling or minimization of the cost of

imported electricity.
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EPFL sub-transmission grid Sources Of ﬂeXibiIity:
;g/flovljgv Grid Connection Point " thSiCaI energy storage storage
\ 2ol eoale M C( »\l\lil:‘:m 10N SyStemS
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: Buildings with 95 kWp rooftop PV :
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I : Dispatchable feeder

The operation of a group of stochastic prosumers (generation + demand) is dispatched according to
a profile established the day before operation (called dispatch plan) by controlling the real power

injection of the battery.
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Time (hours before the beginning of the day of operation)

The feeder dispatch plan on a
S-minute basis is determined.

-
The feeder is dispatched accord-
ing to the dispatch plan.

Tracking of the dispatch plan. | Receding horizon MPC to
control BESS injections.

24
Y Y
TSO Dispatchable feeder operator BESS

Day-ahead scheduling Intra-day and real time operation
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24h dlspatch of heterogeneous EPFL campus aggregated resources

EPFL sub-transmission grid

plan.

I
Forecast

Realization
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(b) GHI forecast vs realization and respective average components.
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(c) Real-time: dispatch plan vs realization of GCP power transit and pro-
sumption.
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The massive integration of volatile resources is and will
drive major changes in modern power systems and future
smart grids.

Current Swiss research programs have developed new
technologies and methodologies to re-engineer the sensing
and control of power grids.

= Real-time situation awareness of power systems
enabling new control schemes.

= Seamless aggregation and control of heterogeneous
energy resources via abstract control methods.
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