

Building control algorithms for heating technology manufacturers as a cloud software service.

Problem

same old controllers new digital products

Climate change, CO₂ emissions, energy security

Electrification of heating

New markets in energy flexibility and smart home

→ old controllers not suitable for new challenges and markets

Predictive control as a cloud service

- Self-learning, predictive algorithm
- 20-40% energy savings, opens new markets: energy flexibility
- In pilots with market leader Danfoss and others

Business model

End user

Saves CHF 400 heating costs per year

Subscription through smart phone-app: CHF XX /month

Data predictive control with physics-based constraints

efficient

20-40% energy use reduction

fast comissioning

learning period only 1-2 weeks

scalable

ready for energy flexibility

markets

unique

only cloud service available

fast evolution

close to top research at ETH Zürich

(#3 for automation) and Empa

Administration building at Empa

- Purpose: prove integration of algorithms with smart thermostats
- Building: light commercial, 2000m², 150
 radiator thermostats

Connection via Danfoss Ally Partner API

Energy and comfort results

Energy consumption

23% reduction compared to base-case (28 750 kWh, CHF 3500, 6t CO₂)

Comfort

Has your room temperature comfort improved or worsened in the last month compared to the last heating period (last winter)?

Further technical potentials: interactive buildings

More than just energy reduction!

Any constraints and set-ups can be integrated efficiently, including:

time-of-use pricing, demand response, individual comfort, supply temperature optimization, other smart devices integration

Research background

Six experimental studies

- Saves 26%-49% of heating/cooling energy, reduces comfort violations by 70% [1, 3]
- Similar performance compared to physics-based MPC [2]
- Physics-constrained ML reduces training data to 1 week [3]
- Works in distributed control [4]
- Works with demand response schemes [5]
- Efficient sun blind integration [6]

> 250 days of experiments

TRV market vs Smart home and demand response

(116m homes with smart thermostats and \$120 subscription price)

Recurring revenue model: \$13.92bn

Global Smart Home market: \$98bn

Global TRV market: \$1.3bn

Global eTRV market: \$0.3bn

Global Demand Response market: \$35bn

Customer and end-user pipeline

Team

Felix Bünning

- CEO | Co-founder
- Dr. sc. ETH Zürich
- World-leading research labs
- Expert on building automation

..Get stuff done."

Benjamin Huber

- CTO | Co-founder
- **MSc Mechanical Engineering**
- ETH Zurich, PSI & Empa
- Industry experience in project management

"Plan it right."

Matthias Sulzer

- CFO | Co-founder
- Experienced serial energy entrepreneur, including IPO
- Networked in building industry CH, US

"See the bigger picture."

advisors

Jonas Felix: Serial Software entrepreneur, IT consultant Prof. John Lygeros: Professor for Automatic Control Dr. Peter Richner: Deputy Director of Empa, building industry

hiring

Senior Software Engineer Software Engineer **Project Engineer**

track record of team

